Morelli, Simon ; Klöckl, Claude ; Eltschka, Christopher ; Siewert, Jens ; Huber, Marcus
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Linear Algebra and its Applications |
---|
Verlag: | Elsevier |
---|
Ort der Veröffentlichung: | NEW YORK |
---|
Band: | 584 |
---|
Seitenbereich: | S. 294-325 |
---|
Datum: | 2020 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1016/j.laa.2019.09.008 | DOI |
|
---|
Stichwörter / Keywords: | ; Linear entropy; Entropy inequalities; Quantum; Bloch decomposition of quantum states |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 50538 |
---|
Zusammenfassung
We derive an inequality for the linear entropy, that gives sharp bounds for all finite dimensional systems. The derivation is based on generalised Bloch decompositions and provides a strict improvement for the possible distribution of purities for all finite dimensional quantum states. It thus extends the widely used concept of entropy inequalities from the asymptotic to the finite regime, and ...
Zusammenfassung
We derive an inequality for the linear entropy, that gives sharp bounds for all finite dimensional systems. The derivation is based on generalised Bloch decompositions and provides a strict improvement for the possible distribution of purities for all finite dimensional quantum states. It thus extends the widely used concept of entropy inequalities from the asymptotic to the finite regime, and should also find applications in entanglement detection and efficient experimental characterisations of quantum states. (C) 2019 Elsevier Inc. All rights reserved.