Abstract
Imidazolidinone-based α,β-unsaturated iminium ions are the reactive species within countless synthetic protocols in asymmetric organocatalysis. However, (E,Z) and (Z,Z) imidazolidinone iminium ions, i.e. (Z)-C[double bond, length as m-dash]C configurations, have been elusive so far. Herein we describe how in situ photoisomerization enables the observation and assignment of high energetic ...
Abstract
Imidazolidinone-based α,β-unsaturated iminium ions are the reactive species within countless synthetic protocols in asymmetric organocatalysis. However, (E,Z) and (Z,Z) imidazolidinone iminium ions, i.e. (Z)-C[double bond, length as m-dash]C configurations, have been elusive so far. Herein we describe how in situ photoisomerization enables the observation and assignment of high energetic (Z)-configured intermediates below the detection limit of NMR spectroscopy for (E,Z) and (Z,Z) iminium perchlorate complexes derived from MacMillan's 1st generation catalyst and cinnamaldehyde. Traces of (E,Z) could even be detected under synthetic conditions at 25 °C in MeCN. Using back isomerization studies and diffusion ordered spectroscopy, conditions were found to stabilize the (E,Z) and (Z,Z) isomers for several hours via ion pair aggregation. Thus, at least (E,Z) should be considered for future investigations in asymmetric iminium ion catalysis.