Go to content
UR Home

Machine learning-based event generator for electron-proton scattering

URN to cite this document:
urn:nbn:de:bvb:355-epub-535945
DOI to cite this document:
10.5283/epub.53594
Alanazi, Y. ; Ambrozewicz, P. ; Battaglieri, M. ; Hiller Blin, Astrid N. ; Kuchera, M. P. ; Li, Y. ; Liu, T. ; McClellan, R. E. ; Melnitchouk, W. ; Pritchard, E. ; Robertson, M. ; Sato, N. ; Strauss, R. ; Velasco, L.
[img]License: Creative Commons Attribution 4.0
PDF - Published Version
(1MB)
[img]XML
(87kB)
Date of publication of this fulltext: 20 Jan 2023 13:37



Abstract

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons