Abstract
The demand for natural vanilla extract, and vanillin in particular, by far exceeds the current production, as both the cultivation of vanilla beans and the extraction of vanillin are laborious. For this purpose, most vanillin used today is produced synthetically, contrary to the general trend toward bio-based products. The present study deals with the synthesis of nature-based vanillin, starting ...
Abstract
The demand for natural vanilla extract, and vanillin in particular, by far exceeds the current production, as both the cultivation of vanilla beans and the extraction of vanillin are laborious. For this purpose, most vanillin used today is produced synthetically, contrary to the general trend toward bio-based products. The present study deals with the synthesis of nature-based vanillin, starting with the more accessible rhizomes of the plant Curcuma longa. Besides vanillin, vanillic acid and p-hydroxybenzaldehyde are synthesized that way, which are also found in the natural vanilla bean. The extraction of the curcuminoids and, finally, their conversion to the flavors are performed using visible light and food-grade chemicals only. A binary mixture of ethanol and triacetin, as well as a surfactant-free microemulsion consisting of water, ethanol, and triacetin, are investigated in this context. The results exceed the literature values for Soxhlet extraction of vanilla beans by a factor > 7.