Go to content
UR Home

Anomaly detection in mixed high dimensional molecular data

URN to cite this document:
urn:nbn:de:bvb:355-epub-545959
DOI to cite this document:
10.5283/epub.54595
Buck, Lena ; Schmidt, Tobias ; Feist, Maren ; Schwarzfischer, Philipp ; Kube, Dieter ; Oefner, Peter J. ; Zacharias, Helena U. ; Altenbuchinger, Michael ; Dettmer, Katja ; Gronwald, Wolfram ; Spang, Rainer
WarningThere is a more recent version of this item available.
[img]License: Creative Commons Attribution 4.0
PDF - Accepted Version
(915kB)
Date of publication of this fulltext: 24 Aug 2023 07:14



Abstract

Motivation Mixed molecular data combines continuous and categorical features of the same samples, such as OMICS profiles with genotypes, diagnoses, or patient sex. Like all high dimensional molecular data it is prone to incorrect values that can stem from various sources as for example the technical limitations of the measurement devices, errors in the sample preparation or contamination. Most ...

plus


Owner only: item control page
  1. Homepage UR

University Library

Publication Server

Contact:

Publishing: oa@ur.de
0941 943 -4239 or -69394

Dissertations: dissertationen@ur.de
0941 943 -3904

Research data: datahub@ur.de
0941 943 -5707

Contact persons