Conti, Sergio ; Dolzmann, Georg
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Discrete & Continuous Dynamical Systems - S |
---|
Verlag: | AMER INST MATHEMATICAL SCIENCES-AIMS |
---|
Ort der Veröffentlichung: | SPRINGFIELD |
---|
Band: | 14 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Seitenbereich: | S. 1-16 |
---|
Datum: | 2021 |
---|
Institutionen: | Mathematik > Prof. Dr. Georg Dolzmann |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.3934/dcdss.2020302 | DOI |
|
---|
Stichwörter / Keywords: | CRYSTAL PLASTICITY; NUMERICAL-ANALYSIS; ENERGY MINIMIZATION; NEMATIC ELASTOMERS; RELAXATION; MICROSTRUCTURES; APPROXIMATION; DEFORMATION; FRAMEWORK; MODEL; Elastoplasticity; single slip; quasiconvexity; relaxation; optimal laminates |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 55704 |
---|
Zusammenfassung
Recent progress in the mathematical analysis of variational models for the plastic deformation of crystals in a geometrically nonlinear setting is discussed. The focus lies on the first time-step and on situations where only one slip system is active, in two spatial dimensions. The interplay of invariance under finite rotations and plastic deformation leads to the emergence of microstructures, ...
Zusammenfassung
Recent progress in the mathematical analysis of variational models for the plastic deformation of crystals in a geometrically nonlinear setting is discussed. The focus lies on the first time-step and on situations where only one slip system is active, in two spatial dimensions. The interplay of invariance under finite rotations and plastic deformation leads to the emergence of microstructures, which can be analyzed in the framework of relaxation theory using the theory of quasiconvexity. A class of elastoplastic energies with one active slip system that converge asymptotically to a model with rigid elasticity is presented and the interplay between relaxation and asymptotics is investigated.