Zusammenfassung
High-throughput sequencing techniques have significantly increased the molecular diagnosis rate for patients with monogenic disorders. This is primarily due to a substantially increased identification rate of disease mutations in the coding sequence, primarily SNVs and indels. Further progress is hampered by difficulties in the detection of structural variants and the interpretation of variants ...
Zusammenfassung
High-throughput sequencing techniques have significantly increased the molecular diagnosis rate for patients with monogenic disorders. This is primarily due to a substantially increased identification rate of disease mutations in the coding sequence, primarily SNVs and indels. Further progress is hampered by difficulties in the detection of structural variants and the interpretation of variants outside the coding sequence. In this review, we provide an overview about how novel sequencing techniques and state-of-the-art algorithms can be used to discover small and structural variants across the whole genome and introduce bioinformatic tools for the prediction of effects variants may have in the non-coding part of the genome.