Abstract
Direct C-H functionalization catalyzed by a robust and recyclable heterogeneous catalyst is highly desirable for sustainable fine chemical synthesis. Bipyridine units covalently incorporated into the backbone of a porous organic polymer were used as a porous macroligand for the heterogenization of a molecular nickel catalyst. A controlled nickel loading within the porous macroligand is achieved, ...
Abstract
Direct C-H functionalization catalyzed by a robust and recyclable heterogeneous catalyst is highly desirable for sustainable fine chemical synthesis. Bipyridine units covalently incorporated into the backbone of a porous organic polymer were used as a porous macroligand for the heterogenization of a molecular nickel catalyst. A controlled nickel loading within the porous macroligand is achieved, and the nickel coordination to the bipyridine (bpy) sites is assessed at the molecular level using IR and solid-state NMR spectroscopy. The heterogenized Ni-bpy catalyst was successfully applied to the direct and fully selective C2 arylation of benzothiophenes, thiophene, and selenophene, as well as for the arylation of free NH-indole. Recyclability of the catalyst was achieved by employing hydride activators to reach a cumulative turnover number of more than 300 after seven cycles of catalysis, which corresponds to a total productivity of 12 g of 2-phenylbenzothiophene, chosen as model target biaryl, per gram of catalyst.