Pogorelov, Yu. G. ; Kochan, D. ; Loktev, V. M.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Low Temperature Physics |
---|
Verlag: | AIP Publishing |
---|
Ort der Veröffentlichung: | MELVILLE |
---|
Band: | 47 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 9 |
---|
Seitenbereich: | S. 754-764 |
---|
Datum: | 2021 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1063/10.0005798 | DOI |
|
---|
Stichwörter / Keywords: | EDGE STATES; graphene nanoribbons; topological states; impurity disorder; Lifshitz model; Anderson model |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 56238 |
---|
Zusammenfassung
We consider the finite ribbons of graphene with two principal orientations, zigzag and armchair, of their edges to study in detail impurity effects on their edge states. An alternative to the known description of quasiparticle states in terms of transversal standing waves is proposed in the recurrence relations for their spectra vs discrete numbers of atomic chains in the ribbon, permitting to ...
Zusammenfassung
We consider the finite ribbons of graphene with two principal orientations, zigzag and armchair, of their edges to study in detail impurity effects on their edge states. An alternative to the known description of quasiparticle states in terms of transversal standing waves is proposed in the recurrence relations for their spectra vs discrete numbers of atomic chains in the ribbon, permitting to simplify the Green function approach to the disorder effects in these systems. The derived analysis shows the microscopic mechanisms of perturbation by different types of impurities on low energy states and clarifies how the stability of topological states in zigzag systems to disorder is related to the discrete amplitudes of these states across the ribbon. An opposite possibility for Mott localization under local impurity perturbations is found for armchair type nanoribbons but at special values of their width.