Zusammenfassung
The effect of dental technical tools on the phase composition and roughness of 3/4/5 yttria-stabilized tetragonal zirconia polycrystalline (3y-/4y-/5y-TZP) for application in prosthetic dentistry was investigated. Additionally, the X-ray diffraction methods of Garvie-Nicholson and Rietveld were compared in a dental restoration context. Seven plates from two manufacturers, each fabricated from ...
Zusammenfassung
The effect of dental technical tools on the phase composition and roughness of 3/4/5 yttria-stabilized tetragonal zirconia polycrystalline (3y-/4y-/5y-TZP) for application in prosthetic dentistry was investigated. Additionally, the X-ray diffraction methods of Garvie-Nicholson and Rietveld were compared in a dental restoration context. Seven plates from two manufacturers, each fabricated from commercially available zirconia (3/4/5 mol%) for application as dental restorative material, were stressed by different dental technical tools used for grinding and polishing, as well as by chewing simulation and thermocycling. All specimens were examined via laser microscopy (surface roughness) and X-ray diffraction (DIN EN ISO 13356 and the Rietveld method). As a result, the monoclinic phase fraction was halved by grinding for the 3y-TZP and transformed entirely into one of the tetragonal phases by polishing/chewing for all specimens. The tetragonal phase t is preferred for an yttria content of 3 mol% and phase t '' for 5 mol%. Mechanical stress, such as polishing or grinding, does not trigger low-temperature degradation (LTD), but it fosters a phase transformation from monoclinic to tetragonal under certain conditions. This may increase the translucency and deteriorate the mechanical properties to some extent.