Startseite UR

An optimal-score-based filter pruning for deep convolutional neural networks

Sawant, Shrutika S. ; Bauer, J. ; Erick, F. X. ; Ingaleshwar, Subodh ; Holzer, N. ; Ramming, A. ; Lang, E. W. ; Götz, Th.



Zusammenfassung

Convolutional Neural Networks (CNN) have achieved excellent performance in the processing of high-resolution images. Most of these networks contain many deep layers in quest of greater segmentation performance. However, over-sized CNN models result in overwhelming memory usage and large inference costs. Earlier studies have revealed that over-sized deep neural models tend to deal with abundant ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner