Zusammenfassung
The sodium channel Na(v)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late INa and thereby enhanced persistent Na+ current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The ...
Zusammenfassung
The sodium channel Na(v)1.8, encoded by SCN10A, is reported to contribute to arrhythmogenesis by inducing the late INa and thereby enhanced persistent Na+ current. However, its exact electrophysiological role in cardiomyocytes remains unclear. Here, we generated induced pluripotent stem cells (iPSCs) with a homozygous SCN10A knock-out from a healthy iPSC line by CRISPR Cas9 genome editing. The edited iPSCs maintained full pluripotency, genomic integrity, and spontaneous in vitro differentiation capacity. The iPSCs are able to differentiate into iPSC-cardiomyocytes, hence making it possible to investigate the role of Na(v)1.8 in the heart.