Startseite UR

Assessment of Artificial Intelligence in Echocardiography Diagnostics in Differentiating Takotsubo Syndrome From Myocardial Infarction

Laumer, Fabian ; Di Vece, Davide ; Cammann, Victoria L. ; Würdinger, Michael ; Petkova, Vanya ; Schönberger, Maximilian ; Schönberger, Alexander ; Mercier, Julien C. ; Niederseer, David ; Seifert, Burkhardt ; Schwyzer, Moritz ; Burkholz, Rebekka ; Corinzia, Luca ; Becker, Anton S. ; Scherff, Frank ; Brouwers, Sofie ; Pazhenkottil, Aju P. ; Dougoud, Svetlana ; Messerli, Michael ; Tanner, Felix C. ; Fischer, Thomas ; Delgado, Victoria ; Schulze, P. Christian ; Hauck, Christian ; Maier, Lars S. ; Nguyen, Ha ; Surikow, Sven Y. ; Horowitz, John ; Liu, Kan ; Citro, Rodolfo ; Bax, Jeroen ; Ruschitzka, Frank ; Ghadri, Jelena-Rima ; Buhmann, Joachim M. ; Templin, Christian



Zusammenfassung

IMPORTANCE Machine learning algorithms enable the automatic classification of cardiovascular diseases based on raw cardiac ultrasound imaging data. However, the utility of machine learning in distinguishing between takotsubo syndrome (TTS) and acute myocardial infarction (AMI) has not been studied. Objectives To assess the utility of machine learning systems for automatic discrimination of TTS ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner