Startseite UR

Model soups improve performance of dermoscopic skin cancer classifiers

Maron, Roman C. ; Hekler, Achim ; Haggenmüller, Sarah ; von Kalle, Christof ; Utikal, Jochen S. ; Müller, Verena ; Gaiser, Maria ; Meier, Friedegund ; Hobelsberger, Sarah ; Gellrich, Frank F. ; Sergon, Mildred ; Hauschild, Axel ; French, Lars E. ; Heinzerling, Lucie ; Schlager, Justin G. ; Ghoreschi, Kamran ; Schlaak, Max ; Hilke, Franz J. ; Poch, Gabriela ; Korsing, Sören ; Berking, Carola ; Heppt, Markus V. ; Erdmann, Michael ; Haferkamp, Sebastian ; Schadendorf, Dirk ; Sondermann, Wiebke ; Goebeler, Matthias ; Schilling, Bastian ; Kather, Jakob N. ; Fröhling, Stefan ; Lipka, Daniel B. ; Krieghoff-Henning, Eva ; Brinker, Titus J.



Zusammenfassung

Background: Image-based cancer classifiers suffer from a variety of problems which negatively affect their performance. For example, variation in image brightness or different cameras can already suffice to diminish performance. Ensemble solutions, where multiple model predictions are combined into one, can improve these problems. However, ensembles are computationally intensive and less ...

plus


Nur für Besitzer und Autoren: Kontrollseite des Eintrags
  1. Universität

Universitätsbibliothek

Publikationsserver

Kontakt:

Publizieren: oa@ur.de
0941 943 -4239 oder -69394

Dissertationen: dissertationen@ur.de
0941 943 -3904

Forschungsdaten: datahub@ur.de
0941 943 -5707

Ansprechpartner