-
Zizlsperger, Martin , Nerreter, Svenja , Yuan, Q., Lohmann, K. B., Sandner, Fabian, Schiegl, Felix , Meineke, Christian , Gerasimenko, Yaroslav A. , Herz, L. M., Siday, Thomas , Huber, Markus A. , Johnston, M. B. und Huber, Rupert
(2024)
In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites.
Nature Photonics.
[Gegenwärtig angezeigt]
- Zizlsperger, Martin, Nerreter, Svenja, Yuan, Qimu, Lohmann, Kilian B., Sandner, Fabian, Schiegl, Felix, Meineke, Christian , Gerasimenko, Yaroslav A. , Herz, Laura M., Siday, Thomas, Huber, Markus A. , Johnston, Michael B. und Huber, Rupert (2024) Data archive of "In situ nanoscopy of single-grain nanomorphology and ultrafast carrier dynamics in metal halide perovskites". [Datensatz]
Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Open Access Art: | Kein Open Access | ||||
Titel eines Journals oder einer Zeitschrift: | Nature Photonics | ||||
Datum: | 17 Juli 2024 | ||||
Institutionen: | Physik > Institut für Experimentelle und Angewandte Physik > Lehrstuhl Professor Huber > Arbeitsgruppe Rupert Huber | ||||
Sonstige Projekte: | DFG 314695032—SFB 1277, 277164313, DFG 314695032—SFB 1277, 326843318, DFG HU 1598/8 | ||||
Identifikationsnummer: |
| ||||
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Zum Teil | ||||
Dokumenten-ID: | 58756 |
Zusammenfassung
Designing next-generation light-harvesting devices requires a detailed understanding of the transport of photoexcited charge carriers. The record-breaking efficiencies of metal halide perovskite solar cells have been linked to effective charge-carrier diffusion, yet the exact nature of charge-carrier out-of-plane transport remains notoriously difficult to explain. The characteristic spatial ...
Zusammenfassung
Designing next-generation light-harvesting devices requires a detailed understanding of the transport of photoexcited charge carriers. The record-breaking efficiencies of metal halide perovskite solar cells have been linked to effective charge-carrier diffusion, yet the exact nature of charge-carrier out-of-plane transport remains notoriously difficult to explain. The characteristic spatial inhomogeneity of perovskite films with nanograins and crystallographic disorder calls for the simultaneous and hitherto elusive in situ resolution of the chemical composition, the structural phase and the ultrafast dynamics of the local out-of-plane transport. Here we simultaneously probe the intrinsic out-of-plane charge-carrier diffusion and the nanoscale morphology by pushing depth-sensitive terahertz near-field nanospectroscopy to extreme subcycle timescales. In films of the organic–inorganic metal halide perovskite FA0.83Cs0.17Pb(I1−xClx)3 (where FA is formamidinium), domains of the cubic α-phase are clearly distinguished from the trigonal δ-phase and PbI2 nano-islands. By analysing deep-subcycle time shifts of the scattered terahertz waveform after photoexcitation, we access the vertical charge-carrier dynamics within single grains. At all of the measured locations, despite topographic irregularities, diffusion is surprisingly homogeneous on the 100 nm scale, although it varies between mesoscopic regions. Linking in situ carrier transport with nanoscale morphology and chemical composition could introduce a paradigm shift for the analysis and optimization of next-generation optoelectronics that are based on nanocrystalline materials.
Metadaten zuletzt geändert: 01 Aug 2024 09:11