Zusammenfassung
We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is significantly reduced compared to its value in the vacuum, in contrast with the static screening mass, which increases with temperature. By a simple argument, near the chiral limit the two ...
Zusammenfassung
We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is significantly reduced compared to its value in the vacuum, in contrast with the static screening mass, which increases with temperature. By a simple argument, near the chiral limit the two masses are expected to determine the quasiparticle dispersion relation. Analyzing two-point functions of the axial charge density at nonvanishing spatial momentum, we find that the predicted dispersion relation and the residue of the pion pole are consistent with the lattice data at low momentum. This test, based on fits to the correlation functions, is confirmed by a second analysis using the Backus-Gilbert method.