Zusammenfassung
Managing the response to natural, man-made, and technical disasters is becoming increasingly important in the light of climate change, globalization, urbanization, and growing conflicts. Sudden onset disasters are typically characterized by high stakes, time pressure, and uncertain, conflicting or lacking information. Since the planning and management of response is a complex task, decision ...
Zusammenfassung
Managing the response to natural, man-made, and technical disasters is becoming increasingly important in the light of climate change, globalization, urbanization, and growing conflicts. Sudden onset disasters are typically characterized by high stakes, time pressure, and uncertain, conflicting or lacking information. Since the planning and management of response is a complex task, decision makers of aid organizations can thus benefit from decision support methods and tools. A key task is the joint allocation of rescue units and the scheduling of incidents under different conditions of collaboration. The authors present an approach to support decision makers who coordinate response units by (a) suggesting mathematical formulations of decision models, (b) providing heuristic solution procedures, and (c) evaluating the heuristics against both current best practice behavior and optimal solutions. The computational experiments show that, for the generated problem instances, (1) current best practice behavior can be improved substantially by our heuristics, (2) the gap between heuristic and optimal solutions is very narrow for instances without collaboration, and (3) the described heuristics are capable of providing solutions for all generated instances in less than a second on a state-of-the-art PC.