Abstract
We give a functional analytic construction of the fermionic projector on a globally hyperbolic Lorentzian manifold of finite lifetime. The integral kernel of the fermionic projector is represented by a two-point distribution on the manifold. By introducing an ultraviolet regularization, we get to the framework of causal fermion systems. The connection to the "negative-energy solutions" of the ...
Abstract
We give a functional analytic construction of the fermionic projector on a globally hyperbolic Lorentzian manifold of finite lifetime. The integral kernel of the fermionic projector is represented by a two-point distribution on the manifold. By introducing an ultraviolet regularization, we get to the framework of causal fermion systems. The connection to the "negative-energy solutions" of the Dirac equation and to the WKB approximation is explained and quantified by a detailed analysis of closed Friedmann-Robertson-Walker universes.