Zusammenfassung
PURPOSE. To identify stem cells in the chamber angle of the monkey eye by detection of 5-bromo-2'-deoxyuridine (BrdU) long-term retention. METHODS. Four cynomolgus monkeys were treated with BrdU via subcutaneous pumps for 4 weeks. The eyes of two animals were processed immediately thereafter (group 1) while in the other animals, BrdU treatment was discontinued for 4 weeks to allow identification ...
Zusammenfassung
PURPOSE. To identify stem cells in the chamber angle of the monkey eye by detection of 5-bromo-2'-deoxyuridine (BrdU) long-term retention. METHODS. Four cynomolgus monkeys were treated with BrdU via subcutaneous pumps for 4 weeks. The eyes of two animals were processed immediately thereafter (group 1) while in the other animals, BrdU treatment was discontinued for 4 weeks to allow identification of cells with long-term BrdU retention (group 2). The number of BrdU-positive nuclei was quantified, and the cells were characterized by immunohistochemistry and transmission electron microscopy (TEM). RESULTS. The number of BrdU-positive cells was higher at Schwalbe's line covering the peripheral end of Descemet's membrane than in Schlemm's canal (SC) endothelium, trabecular meshwork (TM), and scleral spur (SS). Labeling with BrdU in SC, TM, and SS was less intense and the number of labeled cells was smaller in group 2 than in group 1. In contrast, in cells of Schwalbe's line the intensity of BrdU staining and the number of BrdU-positive cells was similar when group 1 and 2 monkeys were compared with each other, indicating long-term BrdU retention. Cells that were BrdU-positive in Schwalbe's line region stained for the stem cell marker OCT4. Details of a stem cell niche in Schwalbe's line region were identified by TEM. CONCLUSIONS. We provide evidence for a niche in the Schwalbe's line region harboring cells with long-term BrdU retention and OCT4 immunoreactivity. The cells likely constitute a population of adult stem cells with the capability to compensate for the loss of TM and/or corneal endothelial cells.