Zusammenfassung
The Lange-Neubert evolution equation describes the scale dependence of the wave function of a meson built of an infinitely heavy quark and light antiquark at light-like separations, which is the hydrogen atom problem of QCD. It has numerous applications to the studies of B-meson decays. We show that the kernel of this equation can be written in a remarkably compact form, as a logarithm of the ...
Zusammenfassung
The Lange-Neubert evolution equation describes the scale dependence of the wave function of a meson built of an infinitely heavy quark and light antiquark at light-like separations, which is the hydrogen atom problem of QCD. It has numerous applications to the studies of B-meson decays. We show that the kernel of this equation can be written in a remarkably compact form, as a logarithm of the generator of special conformal transformation in the light-ray direction. This representation allows one to study solutions of this equation in a very simple and mathematically consistent manner. Generalizing this result, we show that all heavy-light evolution kernels that appear in the renormalization of higher-twist B-meson distribution amplitudes can be written in the same form. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license