Zusammenfassung
Polyetherurethane (PEU) is in use for blood-contacted devices because of its excellent mechanical properties. However, poor hemocompatibility of the hydrophobic material required surface modification or endothelialization. To increase the biocompatibility of PEU, the polymer was coated with a titaniumcarboxonitride [Ti(C,N,O)] layer by a plasma-activated chemical vapor deposition (PACVD) process. ...
Zusammenfassung
Polyetherurethane (PEU) is in use for blood-contacted devices because of its excellent mechanical properties. However, poor hemocompatibility of the hydrophobic material required surface modification or endothelialization. To increase the biocompatibility of PEU, the polymer was coated with a titaniumcarboxonitride [Ti(C,N,O)] layer by a plasma-activated chemical vapor deposition (PACVD) process. Biocompatibility of titaniferously coated PEU was verified using static and dynamic cell culture techniques. Titaniferous coating significantly improved proliferation and mitochondrial activity of human endothelial cells on PEU. These cells captured significantly less mononuclear cells and platelets. Under shear stress for up to 72 hours, titaniferous coating increased endothelial cell adhesion, spreading, and cell density to form an organized monolayer covering the whole luminal surface of vascular PEU grafts. In summary, coating of PEU surfaces with Ti(C,N,O) might be a promising strategy to improve the biocompatibility of biomedical biomaterials. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 141-148, 2014.