Zusammenfassung
Tissue-engineered small-calibre vessel grafts may help to alleviate the lack of graft material for coronary and peripheral bypass grafting in an increasing number of patients. This study explored the use of endothelium-denuded human umbilical veins (HUVs) as scaffolds for vascular tissue engineering in a perfusion bioreactor. Vessel diameter (1.2 +/- 0.4mm), wall thickness (0.38 +/- 0.09mm), ...
Zusammenfassung
Tissue-engineered small-calibre vessel grafts may help to alleviate the lack of graft material for coronary and peripheral bypass grafting in an increasing number of patients. This study explored the use of endothelium-denuded human umbilical veins (HUVs) as scaffolds for vascular tissue engineering in a perfusion bioreactor. Vessel diameter (1.2 +/- 0.4mm), wall thickness (0.38 +/- 0.09mm), uniaxial ultimate failure stress (8029 +/- 1714 kPa) and burst pressure (48.4 +/- 20.2 kPa, range 28.483.9 kPa) were determined in native samples. The effects of endothelium removal from HUVs by enzymatic digestion, hypotonic lysis and dehydration were assessed. Dehydration did not significantly affect contractile function, tetrazolium dye reduction, mechanical strength and vessel structure, whereas the other methods failed in at least one of these parameters. Denudation by dehydration retained laminin, fibronectin, collagen and elastic fibres. Denuded HUVs were seeded in a perfusion bioreactor with either allogeneic HUVs endothelial cells or with saphenous vein endothelial cells harvested from patients with coronary artery disease. Seeding in a perfusion bioreactor resulted in a confluent monolayer of endothelial cells from both sources, as judged by histology and scanning electron microscopy. Seeded cells contained von Willebrand factor and CD31. In conclusion, denuded HUVs should be considered an alternative to decellularized blood vessels, as the process keeps the smooth muscle layer intact and functional, retains proteins relevant for biomechanic properties and for cell attachment and provides a suitable scaffold for seeding an autologous and flow-resistant endothelium. Copyright (c) 2012 John Wiley & Sons, Ltd.