Zusammenfassung
BACKGROUND: Millions of people have at least one tattoo. Complex and light absorbing molecules are implanted in the skin. When tattooed skin receives UV radiation or natural sunlight, photochemical cleavage of the pigments may occur. As a first step, we dissolved pigments in a suitable solvent and analyzed them after light irradiation.
METHODS: The widespread Pigment Red 22 was dissolved in ...
Zusammenfassung
BACKGROUND: Millions of people have at least one tattoo. Complex and light absorbing molecules are implanted in the skin. When tattooed skin receives UV radiation or natural sunlight, photochemical cleavage of the pigments may occur. As a first step, we dissolved pigments in a suitable solvent and analyzed them after light irradiation.
METHODS: The widespread Pigment Red 22 was dissolved in different solvents. The solutions were irradiated with either UVB radiation (up to 8 h) or with natural sunlight (110 days). After irradiation, the solutions were analyzed by means of liquid chromatography and mass spectrometry.
RESULTS: A clear cleavage of the pigment was detected in all solvents and the primary decomposition products were identified. In tetrahydrofuran and dioxane, the pigment concentration decreased significantly during UVB irradiation, whereas the pigment was completely destroyed during sunlight exposure. In chloroform and dichloromethane, the pigment concentration decreased slightly during UVB irradiation, whereas the pigment was almost completely destroyed during sunlight exposure.
CONCLUSION: Since chloroform and dichloromethane do not affect the cleavage process, these solvents are optimal for such in vitro experiments. We have shown the cleavage of the tattoo pigment Red 22 when exposed to UVB radiation or natural sunlight. The decomposition products are hazardous showing a potential risk of being toxic or even carcinogenic. At present, a risk assessment is not feasible since the concentration of pigments and their decomposition products in skin are unknown.