Zusammenfassung
We consider antisymmetric perturbations of real symmetric matrices in the context of random matrix theory and two-color quantum chromodynamics. We investigate the level spacing distributions of eigenvalues that remain real or become complex conjugate pairs under the perturbation. We work out analytical surmises from small matrices and show that they describe the level spacings of large random ...
Zusammenfassung
We consider antisymmetric perturbations of real symmetric matrices in the context of random matrix theory and two-color quantum chromodynamics. We investigate the level spacing distributions of eigenvalues that remain real or become complex conjugate pairs under the perturbation. We work out analytical surmises from small matrices and show that they describe the level spacings of large random matrices. As expected from symmetry arguments, these level spacings also apply to the overlap Dirac operator for two-color QCD with chemical potential.