Zusammenfassung
Introduction: Microscopic examination of histologic slides or cytologic specimens of mediastinal lymph node samples obtained by diagnostic mediastinoscopy or endobronchial ultrasound-guided fine-needle aspiration (EBUS-TBNA) is routinely used for the staging of lung cancer patients. Therefore, we explored whether the detection of tumor-associated mRNA in lymph node samples from patients with ...
Zusammenfassung
Introduction: Microscopic examination of histologic slides or cytologic specimens of mediastinal lymph node samples obtained by diagnostic mediastinoscopy or endobronchial ultrasound-guided fine-needle aspiration (EBUS-TBNA) is routinely used for the staging of lung cancer patients. Therefore, we explored whether the detection of tumor-associated mRNA in lymph node samples from patients with suspected lung cancer adds diagnostic accuracy to conventional histopathological staging. Methods: We examined 202 lymph nodes obtained by EBUS-TBNA or mediastinoscopy from 89 patients with lung cancer. Lymph node samples from patients with nonmalignant disease were available as controls (60 samples from 31 patients). Realtime quantitative mRNA analysis was performed for melanoma antigen-A genes (MAGE-A 1-6, MAGE-A 12) using a LightCycler 480 instrument. Results: MAGE transcript levels in control and cancer patients differed widely, and the 95% confidence interval served to define the threshold between negative and positive samples. MAGE 1 to 6 transcripts were detected in 35 of 122 (28.7%) lymph nodes obtained by EBUS-TBNA and 16 of 80 (20.0%) lymph nodes obtained by mediastinoscopy. MAGE 12 transcripts were detected in 10 of 122 (8.2%) lymph nodes obtained by EBUS-TBNA and 9 of 80 (11.3%) lymph nodes obtained by mediastinoscopy. Although the accuracy of histopathological diagnosis after EBUS-TBNA and mediastinoscopy was 69.6% and 84.1%, respectively, it increased to 81.2% and 86.4%, respectively, when combined with MAGE-quantitative polymerase chain reaction. Conclusions: The combination of EBUS-TBNA and MAGE-quantitative polymerase chain reaction increases the accuracy of tumor cell detection to the level seen with mediastinoscopy.