Bazavov, A. ; Bhattacharya, T. ; Cheng, M. ; DeTar, C. ; Ding, H.-T. ; Gottlieb, Steven ; Gupta, R. ; Hegde, P. ; Heller, U. M. ; Karsch, F. ; Laermann, E. ; Levkova, L. ; Mukherjee, S. ; Petreczky, P. ; Schmidt, C. ; Soltz, R. A. ; Soeldner, W. ; Sugar, R. ; Toussaint, D. ; Unger, W. ; Vranas, P.
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Physical Review D |
---|
Verlag: | AMER PHYSICAL SOC |
---|
Ort der Veröffentlichung: | COLLEGE PK |
---|
Band: | 85 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 5 |
---|
Datum: | 2012 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1103/PhysRevD.85.054503 | DOI |
|
---|
Stichwörter / Keywords: | SYMMETRY-BREAKING; SCALING FUNCTIONS; HIGH-TEMPERATURE; FLAVOR SYMMETRY; MONTE-CARLO; LATTICE QCD; SU(2); O(4); THERMODYNAMICS; SIMULATIONS; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 63949 |
---|
Zusammenfassung
We present results on the chiral and deconfinement properties of the QCD transition at finite temperature. Calculations are performed with 2 + 1 flavors of quarks using the p4, asqtad, and HISQ/tree actions. Lattices with temporal extent N-tau = 6, 8, and 12 are used to understand and control discretization errors and to reliably extrapolate estimates obtained at finite lattice spacings to the ...
Zusammenfassung
We present results on the chiral and deconfinement properties of the QCD transition at finite temperature. Calculations are performed with 2 + 1 flavors of quarks using the p4, asqtad, and HISQ/tree actions. Lattices with temporal extent N-tau = 6, 8, and 12 are used to understand and control discretization errors and to reliably extrapolate estimates obtained at finite lattice spacings to the continuum limit. The chiral transition temperature is defined in terms of the phase transition in a theory with two massless flavors and analyzed using O(N) scaling fits to the chiral condensate and susceptibility. We find consistent estimates from the HISQ/tree and asqtad actions and our main result is T-c = 154 +/- 9 MeV.