Zusammenfassung
Donor-derived mesenchymal stem cells (MSC) can induce long-term acceptance in a rat heart transplantation model when injected prior to transplantation in combination with mycophenolate mofetil (MMF). In contrast, MSC alone cause accelerated graft rejection. To better understand these conflicting data we studied the effects of MSC and MMF on lymphocyte populations in heart allografts and secondary ...
Zusammenfassung
Donor-derived mesenchymal stem cells (MSC) can induce long-term acceptance in a rat heart transplantation model when injected prior to transplantation in combination with mycophenolate mofetil (MMF). In contrast, MSC alone cause accelerated graft rejection. To better understand these conflicting data we studied the effects of MSC and MMF on lymphocyte populations in heart allografts and secondary lymphatic organs. Allogeneic MSC injected prior to transplantation are immunogenic in this model because activated CD4(+) and CD8(+) cells emerged earlier in secondary lymphatic organs of MSC- and MSC/MMF-treated animals, compared to animals not treated with MSC. Consequently T cells infiltrated the grafts of MSC-only treated animals promptly causing accelerated graft rejection. However, few T cells or antigen-presenting cells (APC) infiltrated the grafts of animals treated with MSC and MMF. Consistent with this finding, intercellular adhesion molecule 1 (ICAM-1) and E-selectin was down-regulated exclusively in MSC/MMF-treated grafts, indicating that MSC together with MMF interfere with endothelial activation. Additionally, the presence of interferon-gamma (IFN-gamma) enhanced MSC capabilities to suppress T cell proliferation in vitro. Interestingly, MMF did not influence serum IFN-gamma levels in vivo. Together, our data indicate that MSC pre-activate T cells, but co-treatment with MMF eliminates these T cells, decreases intragraft APC and T cell trafficking by inhibiting endothelial activation, and allows IFN-gamma stimulation of suppressive MSC. (C) 2010 Elsevier B.V. All rights reserved.