Zusammenfassung
In this work we present an approach to understand neuronal mechanisms underlying perceptual learning. Experimental results achieved with stimulus patterns of coherently moving dots are considered to build a simple neuronal model. The design of the model is made transparent and underlying behavioral assumptions made explicit. The key aspect of the suggested neuronal model is the learning algorithm ...
Zusammenfassung
In this work we present an approach to understand neuronal mechanisms underlying perceptual learning. Experimental results achieved with stimulus patterns of coherently moving dots are considered to build a simple neuronal model. The design of the model is made transparent and underlying behavioral assumptions made explicit. The key aspect of the suggested neuronal model is the learning algorithm used: We evaluated an implementation of Hebbian learning and are thus able to provide a straight-forward model capable to explain the neuronal dynamics underlying perceptual learning. Moreover, the simulation results suggest a very simple explanation for the aspect of "sub-threshold" learning (Watanabe et al. in Nature 413:844-884, 2001) as well as the relearning of motion discrimination after damage to primary visual cortex as recently reported (Huxlin et al. in J Neurosci 29:3981-3991, 2009) and at least indicate that perceptual learning might only occur when accompanied by conscious percepts.