Zusammenfassung
Malignant tumors result from the accumulation of genetic alterations in oncogenes and tumor suppressor genes. Much less is known about the genetic changes in benign tumors. Seborrheic keratoses (SK) are very frequent benign human epidermal tumors without malignant potential. We performed a comprehensive mutational screen of genes in the FGFR3-RAS-MAPK and phosphoinositide 3-kinase (PI3K)-AKT ...
Zusammenfassung
Malignant tumors result from the accumulation of genetic alterations in oncogenes and tumor suppressor genes. Much less is known about the genetic changes in benign tumors. Seborrheic keratoses (SK) are very frequent benign human epidermal tumors without malignant potential. We performed a comprehensive mutational screen of genes in the FGFR3-RAS-MAPK and phosphoinositide 3-kinase (PI3K)-AKT pathways from 175 SK, including multiple lesions from each patient. SK commonly harbored multiple bona fide oncogenic mutations in FGFR3, PIK3CA, KRAS, HRAS, EGFR, and AKT1 oncogenes but not in tumor suppressor genes TSC1 and PTEN. Despite the occurrence of oncogenic mutations and the evidence for downstream ERK/MAPK and PI3K pathway signaling, we did not find induction of senescence or a DNA damage response. Array comparative genomic hybridization (aCGH) analysis revealed that SK are genetically stable. The pattern of oncogenic mutations and X chromosome inactivation departs significantly from randomness and indicates that spatially independent lesions from a given patient share a clonal relationship. Our findings show that multiple oncogenic mutations in the major signaling pathways involved in cancer are not sufficient to drive malignant tumor progression. Furthermore, our data provide clues on the origin and spread of oncogenic mutations in tissues, suggesting that apparently independent (multicentric) adult benign tumors may have a clonal origin.