Zusammenfassung
Allogeneic stem cell transplantation (ASCT) after reduced-intensity conditioning has become a reasonable treatment option for patients with advanced myelofibrosis. The role of characteristic molecular genetic abnormalities, such as JAK2V617F on outcome of ASCT, is not yet elucidated. In 139 of 162 myelofibrosis patients with known JAK2V617F mutation status who received ASCT after ...
Zusammenfassung
Allogeneic stem cell transplantation (ASCT) after reduced-intensity conditioning has become a reasonable treatment option for patients with advanced myelofibrosis. The role of characteristic molecular genetic abnormalities, such as JAK2V617F on outcome of ASCT, is not yet elucidated. In 139 of 162 myelofibrosis patients with known JAK2V617F mutation status who received ASCT after reduced-intensity conditioning, the impact of JAK2 genotype, JAK2V617F allele burden, and clearance of mutation after ASCT was evaluated. Overall survival was significantly reduced in multivariate analysis in patients harboring JAK2 wild-type (hazard ratio = 2.14, P = .01) compared with JAK2 mutated patients. No significant influence on outcome was noted for the mutated allele burden analyzed either as continuous variable or after dividing into quartiles. Achievement of JAK2V617F negativity after ASCT was significantly associated with a decreased incidence of relapse (hazard ratio = 0.22, P = .04). In a landmark analysis, patients who cleared JAK2 mutation level in peripheral blood 6 months after ASCT had a significant lower risk of relapse (5% vs 35%, P = .03). We conclude that JAK2V617F-mutated status, but not allele frequency, resulted in an improved survival and rapid clearance after allografting reduces the risk of relapse. (Blood. 2010;116(18):3572-3581)