Zusammenfassung
During embryogenesis, most of the mammalian skeletal system is preformed as cartilaginous structures that ossify later. The different stages of cartilage and skeletal development are well described, and several molecular factors are known to influence the events of this enchondral ossification, especially transcription factors. Members of the AP-2 family of transcription factors play important ...
Zusammenfassung
During embryogenesis, most of the mammalian skeletal system is preformed as cartilaginous structures that ossify later. The different stages of cartilage and skeletal development are well described, and several molecular factors are known to influence the events of this enchondral ossification, especially transcription factors. Members of the AP-2 family of transcription factors play important roles in several cellular processes, such as apoptosis, migration and differentiation. Studies with knockout mice demonstrate that a main function of AP-2s is the suppression of terminal differentiation during embryonic development. Additionally, the specific role of these molecules as regulators during chondrogenesis has been characterized. This review gives an overview of AP-2s, and discusses the recent findings on the AP-2 family, in particular AP-2 alpha, AP-2 beta, and AP-2 epsilon, as regulators of cartilage and skeletal development.