Ernst, Thomas ; Paul, Tobias ; Schlagheck, Peter
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Physical Review A |
---|
Verlag: | AMER PHYSICAL SOC |
---|
Ort der Veröffentlichung: | COLLEGE PK |
---|
Band: | 81 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Datum: | 2010 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1103/PhysRevA.81.013631 | DOI |
|
---|
Stichwörter / Keywords: | GUIDED ATOM LASER; ANDERSON LOCALIZATION; EINSTEIN CONDENSATION; IMPENETRABLE BOSONS; OUTPUT COUPLER; SYSTEMS; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 66633 |
---|
Zusammenfassung
We explore atom-laser-like transport processes of ultracold Bose-condensed atomic vapors in mesoscopic waveguide structures beyond the Gross-Pitaevskii mean-field theory. Based on a microscopic description of the transport process in the presence of a coherent source that models the outcoupling from a reservoir of perfectly Bose-Einstein condensed atoms, we derive a system of coupled quantum ...
Zusammenfassung
We explore atom-laser-like transport processes of ultracold Bose-condensed atomic vapors in mesoscopic waveguide structures beyond the Gross-Pitaevskii mean-field theory. Based on a microscopic description of the transport process in the presence of a coherent source that models the outcoupling from a reservoir of perfectly Bose-Einstein condensed atoms, we derive a system of coupled quantum evolution equations that describe the dynamics of a dilute condensed Bose gas in the framework of the Hartree-Fock-Bogoliubov approximation. We apply this method to study the transport of dilute Bose gases through an atomic quantum dot and through waveguides with disorder. Our numerical simulations reveal that the onset of an explicitly time-dependent flow corresponds to the appearance of strong depletion of the condensate on the microscopic level and leads to a loss of global phase coherence.