Zusammenfassung
During its life cycle, the malaria parasite Plasmodium falciparum is found intracellular to human erythrocytes, where its survival and ability to multiply critically depends on the control of the environment redox state. Thioredoxin is a small protein containing 104 amino acids that is part of the parasite specific redox system. During the catalytic cycle it alternates between a reduced and ...
Zusammenfassung
During its life cycle, the malaria parasite Plasmodium falciparum is found intracellular to human erythrocytes, where its survival and ability to multiply critically depends on the control of the environment redox state. Thioredoxin is a small protein containing 104 amino acids that is part of the parasite specific redox system. During the catalytic cycle it alternates between a reduced and oxidised form. Here we report the complete resonance assignment of Plasmodium falciparum thioredoxin in its oxidized form by heteronuclear multidimensional spectroscopy. The obtained chemical shifts differ significantly from those reported earlier for this protein in its reduced state.