Zusammenfassung
The ATP-binding cassette transporters ABCA1 and ABCG1 are highly expressed in macrophage-derived foam cells and promote reverse cholesterol efflux via biogenesis of high-density lipoproteins. The aim of this study was to analyze the direct effects of bioactive factors related to the metabolic syndrome on macrophage transcript levels of all 47 human ABC transporters. Using in vitro M-CSF ...
Zusammenfassung
The ATP-binding cassette transporters ABCA1 and ABCG1 are highly expressed in macrophage-derived foam cells and promote reverse cholesterol efflux via biogenesis of high-density lipoproteins. The aim of this study was to analyze the direct effects of bioactive factors related to the metabolic syndrome on macrophage transcript levels of all 47 human ABC transporters. Using in vitro M-CSF predifferentiated macrophages and TaqMan low density arrays we could show that linoleic acid, palmitic acid, and high glucose levels have a major impact on ABCA1 and ABCG1 expression but do not strongly affect most other human ABC transporters. In Western blot experiments we demonstrate that ABCA1 and ABCG1 protein levels are synchronously suppressed by high glucose levels and the omega 6-unsaturated fatty acid linoleic acid. We conclude that metabolites associated with the metabolic syndrome enhance the formation of atherosclerotic lesions by diminishing the reverse cholesterol transport function of ABCA1 and ABCG1.