Zusammenfassung
Coverage of cardiovascular bioprostheses with autologous endothelium is used for the purpose of improving blood compatibility. The aim of our study was to analyze endothelialization potential of glutaraldehyde-fixed heart valves, cellular functions of seeded endothelial cells (EC), and the impact of a two-stage seeding protocol using human vascular fibroblasts (FB) and EC from saphenous veins ...
Zusammenfassung
Coverage of cardiovascular bioprostheses with autologous endothelium is used for the purpose of improving blood compatibility. The aim of our study was to analyze endothelialization potential of glutaraldehyde-fixed heart valves, cellular functions of seeded endothelial cells (EC), and the impact of a two-stage seeding protocol using human vascular fibroblasts (FB) and EC from saphenous veins (HSVEC) on cellular functional properties in vitro. Adherence and morphology of adhered cells were assessed by scanning electronic microscopy and immunohistochemistry. Reproducible, complete surface coverage with EC was established on decellularized and glutaraldehyde-fixed bovine pericardium. Analyzing functional properties of cells directly adhered to biomaterial revealed nonproliferative cells, which were capable of inflammatory Stimulation in terms of TNF-induced increase in interleukin-6 secretion and adhesion or inflammatory cells. Furthermore, EC showed sustained antithrombotic properties quantified by platelet adhesion onto EC and prostacyclin secretion by EC. Preseeding with vascular fibroblasts using a two-stage seeding protocol induced EC proliferation and improved inflammatory and anti-thrombotic functions. Cardiovascular biomaterials differ significantly in their potential to allow for adhesion of human EC. Successfully endothelialized biomaterial, however, revealed cellular properties which are likely to be favorable to improving performance of biomaterials. Two-stage seeding adds regenerative potential and improves cell functions of adherent EC. (c) 2008 Wiley Periodicals. Inc. J Biomed Mater Res Part B: Appl Biomater 88B: 130-138. 2009