Zusammenfassung
We investigate the insulating phase that forms in a titanium nitride film in a close vicinity of the disorder-driven superconductor-insulator transition. In zero magnetic field the temperature dependence of the resistance reveals a sequence of distinct regimes upon decreasing temperature crossing over from logarithmic to activated behavior with the variable-range hopping squeezing in between. In ...
Zusammenfassung
We investigate the insulating phase that forms in a titanium nitride film in a close vicinity of the disorder-driven superconductor-insulator transition. In zero magnetic field the temperature dependence of the resistance reveals a sequence of distinct regimes upon decreasing temperature crossing over from logarithmic to activated behavior with the variable-range hopping squeezing in between. In perpendicular magnetic fields below 2 T, the thermally activated regime retains at intermediate temperatures, whereas at ultralow temperatures, the resistance increases faster than that of the thermally activated type. This indicates a change of the mechanism of the conductivity. We find that at higher magnetic fields the thermally activated behavior disappears and the magnetoresistive isotherms saturate towards the value close to quantum resistance h/e(2).