Zusammenfassung
Background: Due to low energy levels in microphotodiode-based subretinal visual prostheses, an external power supply is mandatory. We report on the surgical feasibility and the functional outcome of the extraocular part of an approach to connect a subretinal prosthesis to an extracorporeal connector in the retro-auricular space via a trans-scleral, transchoroidal cable. Methods: Seven volunteers ...
Zusammenfassung
Background: Due to low energy levels in microphotodiode-based subretinal visual prostheses, an external power supply is mandatory. We report on the surgical feasibility and the functional outcome of the extraocular part of an approach to connect a subretinal prosthesis to an extracorporeal connector in the retro-auricular space via a trans-scleral, transchoroidal cable. Methods: Seven volunteers with retinitis pigmentosa received an active subretinal implant; energy was supplied by gold wires on a trans-sclerally, transchoroidally implanted polyimide foil leading to the lateral orbital rim where it was fixated and connected to a silicone cable. The cable was implanted subperiostally beneath the temporal muscle using a trocar to the retro-auricular space where it penetrated the skin for connection to a stimulator. To avoid subretinal movement of the implant, three tension relief points have been introduced. Results: All implantations were performed as planned without complications, and no serious adverse events occurred in the postoperative period. Fixation of the implants was stable throughout the entire study duration of 4 weeks; permanent skin penetration proved to be uncomplicated. Motility was minimally restricted in downgaze and ab-/adduction. Explantation was uneventful. Conclusion: The above-described procedure provides a method for stable fixation of a subretinal device with a trans-scleral, transchoroidal cable connection to an extracorporeal connector.