Zusammenfassung
A new approach for the modeling of molecules in micellar systems and especially in biomembranes, COSMOmic, is presented, and its performance is validated on the example of the partitioning of molecules between water and biological membranes. Starting from quantum chemical calculations of the surfactant, solvent, and solute molecules, and being based on the COSMO-RS method for fluid-phase ...
Zusammenfassung
A new approach for the modeling of molecules in micellar systems and especially in biomembranes, COSMOmic, is presented, and its performance is validated on the example of the partitioning of molecules between water and biological membranes. Starting from quantum chemical calculations of the surfactant, solvent, and solute molecules, and being based on the COSMO-RS method for fluid-phase thermodynamic properties, COSMOmic is essentially free of additional adjustable parameters. The inclusion of an elastic energy correction into the COSMOmic model did not turn out to yield any significant improvement. The novel COSMOmic method allows for the efficient prediction of the distribution of molecules in micellar systems.