Dokumentenart: | Artikel | ||||
---|---|---|---|---|---|
Titel eines Journals oder einer Zeitschrift: | BMC Genomics | ||||
Verlag: | BIOMED CENTRAL LTD | ||||
Ort der Veröffentlichung: | LONDON | ||||
Band: | 9 | ||||
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 | ||||
Seitenbereich: | S. 165 | ||||
Datum: | 2008 | ||||
Institutionen: | Medizin > Lehrstuhl für Medizinische Mikrobiologie und Hygiene | ||||
Identifikationsnummer: |
| ||||
Stichwörter / Keywords: | RIBOSOMAL-PROTEIN PSEUDOGENES; BINDING CASSETTE TRANSPORTER; HUMAN GENOME; PROCESSED PSEUDOGENES; MOUSE; IDENTIFICATION; EVOLUTION; CONVERSION; BROWSER; DISEASE; | ||||
Dewey-Dezimal-Klassifikation: | 600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin | ||||
Status: | Veröffentlicht | ||||
Begutachtet: | Ja, diese Version wurde begutachtet | ||||
An der Universität Regensburg entstanden: | Ja | ||||
Dokumenten-ID: | 68212 |
Zusammenfassung
Background: Pseudogenes are an integral component of the human genome. Little attention, however, has so far been paid to the phenomenon that some pseudogenes are transcriptionally active. Recently, we demonstrated that the human ortholog of the rodent testis-specific ATP-binding cassette (ABC) transporter Abca17 is a ubiquitously transcribed pseudogene (ABCA17P). The aim of the present study was ...
Zusammenfassung
Background: Pseudogenes are an integral component of the human genome. Little attention, however, has so far been paid to the phenomenon that some pseudogenes are transcriptionally active. Recently, we demonstrated that the human ortholog of the rodent testis-specific ATP-binding cassette (ABC) transporter Abca17 is a ubiquitously transcribed pseudogene (ABCA17P). The aim of the present study was to establish a complete inventory of all ABC transporter pseudogenes in the human genome and to identify transcriptionally active ABC transporter pseudogenes. Moreover, we tested the hypothesis that a regulatory interdependency exists between ABC transporter pseudogenes and their parental protein coding equivalents. Results: Systematic bioinformatic analysis revealed the existence of 22 ABC transporter pseudogenes within the human genome. We identified two clusters on chromosomes 15 and 16, respectively, which harbor almost half of all pseudogenes (n = 10). Available information from EST and mRNA databases and RT-PCR expression profiling indicate that a large portion of the ABC transporter pseudogenes (45%, n = 10) are transcriptionally active and some of them are expressed as alternative splice variants. We demonstrate that both pseudogenes of the pseudoxanthoma elasticum gene ABCC6, ABCC6P1 and ABCC6P2, are transcribed. ABCC6P1 and ABCC6 possess near-identical promoter sequences and their tissue-specific expression profiles are strikingly similar raising the possibility that they form a gene-pseudogene dual transcription unit. Intriguingly, targeted knockdown of the transcribed pseudogene ABCC6P1 resulted in a significant reduction of ABCC6 mRNA expression levels. Conclusion: The human genome contains a surprisingly small number of ABC transporter pseudogenes relative to other known gene families. They are unevenly distributed across the chromosomes. Importantly, a significant portion of the ABC transporter pseudogenes is transcriptionally active. The downregulation of ABCC6 mRNA levels by targeted suppression of the expression of its pseudogene ABCC6P1 provides evidence, for the first time, for a regulatory interdependence of a transcribed pseudogene and its protein coding counterpart in the human genome.
Metadaten zuletzt geändert: 19 Dez 2024 13:21