Zusammenfassung
To assess the usefulness of different post and core materials and systems, in vitro testing of fracture strength and fatigue resistance is a useful tool. However, the literature does not present coherent results as to which system can withstand the highest loads. With a geometrical model, the effects of load angulation and contact point location on the generated forces were calculated. To ...
Zusammenfassung
To assess the usefulness of different post and core materials and systems, in vitro testing of fracture strength and fatigue resistance is a useful tool. However, the literature does not present coherent results as to which system can withstand the highest loads. With a geometrical model, the effects of load angulation and contact point location on the generated forces were calculated. To validate the mathematical model, a set of measurements was performed with a set-up that made it possible to measure the critical forces on a post and core restoration. A high level of correlation between the predictions of the model and the measurements was found. It was shown that the resulting forces are strongly dependent on the precise design of the test set-up and results from different geometries cannot be compared directly. Very strong sensitivity to small misalignment was found, all of which serves to explain the large differences in the literature.