Zusammenfassung
8 -(Pyren-1-yl)-2'-deoxyguano sine (Py-G) was incorporated synthetically as a modified DNA base and optical probe into oligonucleotides. A variety of Py-G-modified DNA duplexes have been investigated by methods of optical spectroscopy. The DNA duplex hybridization can be observed by both fluorescence and absorption spectroscopy since the Py-G group exhibits altered properties in single strands ...
Zusammenfassung
8 -(Pyren-1-yl)-2'-deoxyguano sine (Py-G) was incorporated synthetically as a modified DNA base and optical probe into oligonucleotides. A variety of Py-G-modified DNA duplexes have been investigated by methods of optical spectroscopy. The DNA duplex hybridization can be observed by both fluorescence and absorption spectroscopy since the Py-G group exhibits altered properties in single strands versus double strands for both spectroscopy methods. The fluorescence enhancement upon DNA hybridization can be improved significantly by the presence of 7-deazaguanin as an additional modification and charge acceptor three bases away from the Py-G modification site. Moreover, Py-G in DNA can be applied as a photoinducable donor for charge transfer processes when indol is present as an artificial DNA base and charge acceptor. Correctly base-paired duplexes can be discriminated from mismatched ones by comparison of their fluorescence quenching. (C) 2007 Elsevier Ltd. All rights reserved.