Zusammenfassung
The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi ...
Zusammenfassung
The influence of a resonant oscillating electromagnetic field on a single electron in coupled lateral quantum dots in the presence of phonon-induced relaxation and decoherence is investigated. Using symmetry arguments, it is shown that the spin and orbital resonances can be efficiently controlled by spin-orbit interactions. The control is possible due to the strong sensitivity of the Rabi frequency to the dot configuration (the orientation of the dot and the applied static magnetic field); the sensitivity is a result of the anisotropy of the spin-orbit interactions. The so-called easy passage configuration is shown to be particularly suitable for a magnetic manipulation of spin qubits, ensuring long spin relaxation times and protecting the spin qubits from electric field disturbances accompanying on-chip manipulations.