Bursa, Francis 
Alternative Links zum Volltext:DOIVerlag
| Dokumentenart: | Artikel |
|---|
| Titel eines Journals oder einer Zeitschrift: | Physical Review D |
|---|
| Verlag: | AMER PHYSICAL SOC |
|---|
| Ort der Veröffentlichung: | COLLEGE PK |
|---|
| Band: | 76 |
|---|
| Nummer des Zeitschriftenheftes oder des Kapitels: | 3 |
|---|
| Datum: | 2007 |
|---|
| Institutionen: | Physik > Institut für Theoretische Physik |
|---|
| Identifikationsnummer: | | Wert | Typ |
|---|
| 10.1103/PhysRevD.76.034503 | DOI |
|
|---|
| Stichwörter / Keywords: | LATTICE GAUGE-THEORY; STOCHASTIC CONFINEMENT; PHASE-TRANSITION; SPECTRAL DENSITY; |
|---|
| Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
|---|
| Status: | Veröffentlicht |
|---|
| Begutachtet: | Ja, diese Version wurde begutachtet |
|---|
| An der Universität Regensburg entstanden: | Ja |
|---|
| Dokumenten-ID: | 68985 |
|---|
Zusammenfassung
We investigate the matching of eigenvalue densities of Wilson loops in SU(N) lattice gauge theory: the eigenvalue densities in 1+1, 2+1, and 3+1 dimensions are nearly identical when the traces of the loops are equal. We show that the matching is present to at least second order in the strong-coupling expansion and also to second order in perturbation theory. We find that in the continuum limit ...
Zusammenfassung
We investigate the matching of eigenvalue densities of Wilson loops in SU(N) lattice gauge theory: the eigenvalue densities in 1+1, 2+1, and 3+1 dimensions are nearly identical when the traces of the loops are equal. We show that the matching is present to at least second order in the strong-coupling expansion and also to second order in perturbation theory. We find that in the continuum limit there is matching at all values of the trace for bare Wilson loops. We confirm numerically that there is matching in these limits and find that there are small violations away from them. We discuss the implications for the bulk transitions and for nonanalytic gap formation at N=infinity in 2+1 and 3+1 dimensions.