Zusammenfassung
Background and Aims Many alpine plant species combine clonal and sexual reproduction to minimize the risks of flowering and seed production in high mountain regions. The spatial genetic structure and diversity of these alpine species is strongly affected by different clonal strategies (phalanx or guerrilla) and the proportion of generative and vegetative reproduction. Methods The clonal structure ...
Zusammenfassung
Background and Aims Many alpine plant species combine clonal and sexual reproduction to minimize the risks of flowering and seed production in high mountain regions. The spatial genetic structure and diversity of these alpine species is strongly affected by different clonal strategies (phalanx or guerrilla) and the proportion of generative and vegetative reproduction. Methods The clonal structure of the alpine plant species Salix herbacea was investigated in a 3 x 3 in plot of an alpine meadow using microsatellite (simple sequence repeat; SSR) analysis. The data obtained were compared with the results of a random amplified polymorphic DNA (RAPD) analysis. Key Results SSR analysis, based on three loci and 16 alleles, revealed 24 different genotypes and a proportion of distinguishable genotypes of 0.18. Six SSR clones were found consisting of at least five samples, 17 clones consisting of more than two samples and seven single genotypes. Mean clone size comprising at least five samples was 0.96 m(2), and spatial autocorrelation analysis showed strong similarity of samples up to 130 cm. RAPD analysis revealed a higher level of clonal diversity but a comparable number of larger clones and a similar spatial structure. Conclusions The spatial genetic structure as well as the occurrence of single genotypes revealed in this study suggests both clonal and sexual propagation and repeated seedling recruitment in established populations of S. herbacea and is thus suggestive of a relaxed phalanx strategy.