Zusammenfassung
A significant amount of many-body problems of quantum or classical equilibrium statistical mechanics are conveniently treated at fixed temperature and system size. In this paper, we present a new functional integral approach for solving canonical ensemble problems over the entire coupling range, relying on the method of Gaussian equivalent representation of Efimov and Ganbold [Phys. Status Solidi ...
Zusammenfassung
A significant amount of many-body problems of quantum or classical equilibrium statistical mechanics are conveniently treated at fixed temperature and system size. In this paper, we present a new functional integral approach for solving canonical ensemble problems over the entire coupling range, relying on the method of Gaussian equivalent representation of Efimov and Ganbold [Phys. Status Solidi 168, 165 (1991)]. We demonstrate its suitability and competitiveness for performing approximate calculations of thermodynamic and structural quantities on the example of a repulsive potential model, widely used in soft matter theory. (c) 2006 American Institute of Physics.