Zusammenfassung
The influx of autoreactive lymphocytes into the site of an autoimmune inflammation is mediated by certain chemokines. Autoimmune insulitis in type 1 diabetes is viewed as the result of destructive Th-1-cells and their corresponding antigen-presenting cells infiltrating the pancreatic islets. Blocking the chemokine receptors that mediate a Th-1-reaction has been shown to reduce autoimmunity in ...
Zusammenfassung
The influx of autoreactive lymphocytes into the site of an autoimmune inflammation is mediated by certain chemokines. Autoimmune insulitis in type 1 diabetes is viewed as the result of destructive Th-1-cells and their corresponding antigen-presenting cells infiltrating the pancreatic islets. Blocking the chemokine receptors that mediate a Th-1-reaction has been shown to reduce autoimmunity in other experimental autoimmune disorders. We used the NOD mouse model to investigate the potency of anti-CCR2 and anti-CCR5 antibodies to inhibit the influx of Th-1-cells into the pancreatic islets, thus preventing diabetes onset. Eleven-week-old female NOD mice were treated with 500 mu g of a monoclonal anti-CCR5 or anti-CCR2 or an isotype control anti-body every third day over two weeks. We did not observe any preventive effect in either treatment group, but accelerated diabetes onset in the anti-CCR5 treated group. The number of autoantigen-specific Th-1-cells detected in the two treated groups was not reduced, but increased in the anti-CCR5 group. Redundancy within the chemokine system may account for this lack of prevention, or the intervention may have come too late in the disease process. Furthermore, blocking Th-1 chemokine receptors in the late autoimmune process may also inhibit regulatory T-cells, thus accelerating rather than preventing the disease.