Osterloh, Andreas ; Siewert, Jens
Alternative Links zum Volltext:DOIVerlag
Dokumentenart: | Artikel |
---|
Titel eines Journals oder einer Zeitschrift: | Physical Review A |
---|
Verlag: | AMERICAN PHYSICAL SOC |
---|
Ort der Veröffentlichung: | COLLEGE PK |
---|
Band: | 72 |
---|
Nummer des Zeitschriftenheftes oder des Kapitels: | 1 |
---|
Datum: | 2005 |
---|
Institutionen: | Physik > Institut für Theoretische Physik |
---|
Identifikationsnummer: | Wert | Typ |
---|
10.1103/PhysRevA.72.012337 | DOI |
|
---|
Stichwörter / Keywords: | STATES; |
---|
Dewey-Dezimal-Klassifikation: | 500 Naturwissenschaften und Mathematik > 530 Physik |
---|
Status: | Veröffentlicht |
---|
Begutachtet: | Ja, diese Version wurde begutachtet |
---|
An der Universität Regensburg entstanden: | Ja |
---|
Dokumenten-ID: | 70649 |
---|
Zusammenfassung
We present a method to construct entanglement measures for pure states of multipartite qubit systems. The key element of our approach is an antilinear operator that we call "comb". For qubits (or spin 1/2) the combs are automatically invariant under SL(2,C). This implies that the filters obtained from the combs are entanglement monotones by construction. We give alternative formulas for the ...
Zusammenfassung
We present a method to construct entanglement measures for pure states of multipartite qubit systems. The key element of our approach is an antilinear operator that we call "comb". For qubits (or spin 1/2) the combs are automatically invariant under SL(2,C). This implies that the filters obtained from the combs are entanglement monotones by construction. We give alternative formulas for the concurrence and the three-tangle as expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine four-qubit entanglement.