Zusammenfassung
Objective. Use of anti-tumor necrosis factor (anti-TNF) antibody therapy in rheumatoid arthritis (RA) has expanded our understanding of possible mechanisms by which this treatment reduces inflammation. Beyond its effects on local immune responses, anti-TNF treatment may also modulate the local hormone supply. Because androgens are thought to inhibit immune responses, their presence in inflamed ...
Zusammenfassung
Objective. Use of anti-tumor necrosis factor (anti-TNF) antibody therapy in rheumatoid arthritis (RA) has expanded our understanding of possible mechanisms by which this treatment reduces inflammation. Beyond its effects on local immune responses, anti-TNF treatment may also modulate the local hormone supply. Because androgens are thought to inhibit immune responses, their presence in inflamed tissue is an additional important antiinflammatory factor. Methods. We investigated conversion of the ubiquitous dehydroepiandrosterone sulfate (DHEAS), the biologically inactive precursor of DHEA, to the androgen DHEA in mixed synovial cells from patients with RA and patients with osteoarthritis (OA), making use of thin-layer chromatography and phosphorimaging. Using immunohistochemical analysis, we detected the key enzyme, steroid sulfatase. Results. DHEAS-to-DHEA conversion in synovial cells from patients with RA was significantly lower than that in synovial cells from patients with OA (mean +/- SEM 3.3 +/- 0.5% versus 6.0 +/- 0.9% of applied H-3-DHEAS per 106 synovial cells; P = 0.042). In RA, but not in OA, the level of converted 3 H-DHEA was inversely correlated with the density of synovial macrophages (for RA, R-rank = -0.725, P = 0.005; for OA, R-rank = 0.069, P not significant [NS]) and T cells (for RA, Rrank = - 0.621, P = 0.024; for OA, R-rank = 0.247, P NS). Double immunohistochemistry analysis revealed that steroid sulfatase was located mainly in synovial macrophages but was also observed in fibroblasts. Neutralization of TNF largely up-regulated the conversion of DHEAS to DHEA in RA, but not in OA. A similar neutralizing effect was observed with polyclonal human immunoglobulins; this effect is most probably mediated via TNF neutralization at low TNF concentrations. Conclusion. These data indicate that TNF inhibits the conversion of DHEAS to DHEA in RA synovial cells. Because androgens are antiinflammatory mediators, TNF-induced inhibition of the local androgen supply is a supplementary proinflammatory factor. Consequently, anti-TNF strategies may also exert their positive effects by increasing tissue androgens.