Zusammenfassung
Recently, there has been some progress on Newton-type methods with cubic convergence that do not require the computation of second derivatives. Weerakoon and Fernando (Appl. Math. Lett. 13 (2000) 87) derived the Newton method and a cubically convergent variant by rectangular and trapezoidal approximations to Newton's theorem, while Frontini and Sormani (J. Comput. Appl. Math. 156 (2003) 345; 140 ...
Zusammenfassung
Recently, there has been some progress on Newton-type methods with cubic convergence that do not require the computation of second derivatives. Weerakoon and Fernando (Appl. Math. Lett. 13 (2000) 87) derived the Newton method and a cubically convergent variant by rectangular and trapezoidal approximations to Newton's theorem, while Frontini and Sormani (J. Comput. Appl. Math. 156 (2003) 345; 140 (2003) 419 derived further cubically convergent variants by using different approximations to Newton's theorem. Homeier Q. Comput. Appl. Math. 157 (2003) 227; 169 (2004) 161) independently derived one of the latter variants and extended it to the multivariate case. Here, we show that one can modify the Werrakoon-Fernando approach by using Newton's theorem for the inverse function and derive a new class of cubically convergent Newton-type methods. (C) 2004 Elsevier B.V. All rights reserved.