Zusammenfassung
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl- for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse ...
Zusammenfassung
Inhibition of epithelial Na+ channels (ENaC) by the cystic fibrosis transmembrane conductance regulator (CFTR) has been demonstrated previously. Recent studies suggested a role of cytosolic Cl- for the interaction of CFTR with ENaC, when studied in Xenopus oocytes. In the present study we demonstrate that the Na+/H+-exchanger regulator factor (NHERF) controls expression of CFTR in mouse collecting duct cells. Inhibition of NHERF largely attenuates CFTR expression, which is paralleled by enhanced Ca2+-dependent Cl- secretion and augmented Na+ absorption by the ENaC. It is further demonstrated that epithelial Na+ absorption and ENaC are inhibited by cytosolic Cl- and that stimulation by secretagogues enhances the intracellular Cl- concentration. Thus, the data provide a clue to the question, how epithelial cells can operate as both absorptive and secretory units: Increase in intracellula Cl- Cl- during activation of secretion will inhibit ENaC and switch epithelial transport from salt absorption to Cl- secretion.